Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 69 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 42 tok/s Pro
GPT-5 High 41 tok/s Pro
GPT-4o 120 tok/s Pro
Kimi K2 191 tok/s Pro
GPT OSS 120B 459 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Crowdsourcing Pareto-Optimal Object Finding by Pairwise Comparisons (1409.4161v1)

Published 15 Sep 2014 in cs.AI and cs.DB

Abstract: This is the first study on crowdsourcing Pareto-optimal object finding, which has applications in public opinion collection, group decision making, and information exploration. Departing from prior studies on crowdsourcing skyline and ranking queries, it considers the case where objects do not have explicit attributes and preference relations on objects are strict partial orders. The partial orders are derived by aggregating crowdsourcers' responses to pairwise comparison questions. The goal is to find all Pareto-optimal objects by the fewest possible questions. It employs an iterative question-selection framework. Guided by the principle of eagerly identifying non-Pareto optimal objects, the framework only chooses candidate questions which must satisfy three conditions. This design is both sufficient and efficient, as it is proven to find a short terminal question sequence. The framework is further steered by two ideas---macro-ordering and micro-ordering. By different micro-ordering heuristics, the framework is instantiated into several algorithms with varying power in pruning questions. Experiment results using both real crowdsourcing marketplace and simulations exhibited not only orders of magnitude reductions in questions when compared with a brute-force approach, but also close-to-optimal performance from the most efficient instantiation.

Citations (19)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube