Papers
Topics
Authors
Recent
Search
2000 character limit reached

4-Factor-criticality of vertex-transitive graphs

Published 7 Sep 2014 in math.CO | (1409.2117v1)

Abstract: A graph of order $n$ is $p$-factor-critical, where $p$ is an integer of the same parity as $n$, if the removal of any set of $p$ vertices results in a graph with a perfect matching. 1-factor-critical graphs and 2-factor-critical graphs are well-known factor-critical graphs and bicritical graphs, respectively. It is known that if a connected vertex-transitive graph has odd order, then it is factor-critical, otherwise it is elementary bipartite or bicritical. In this paper, we show that a connected vertex-transitive non-bipartite graph of even order at least 6 is 4-factor-critical if and only if its degree is at least 5. This result implies that each connected non-bipartite Cayley graphs of even order and degree at least 5 is 2-extendable.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Collections

Sign up for free to add this paper to one or more collections.