Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Compressed Sensing of Simultaneous Low-Rank and Joint-Sparse Matrices (1211.5058v1)

Published 21 Nov 2012 in cs.IT and math.IT

Abstract: In this paper we consider the problem of recovering a high dimensional data matrix from a set of incomplete and noisy linear measurements. We introduce a new model that can efficiently restrict the degrees of freedom of the problem and is generic enough to find a lot of applications, for instance in multichannel signal compressed sensing (e.g. sensor networks, hyperspectral imaging) and compressive sparse principal component analysis (s-PCA). We assume data matrices have a simultaneous low-rank and joint sparse structure, and we propose a novel approach for efficient compressed sensing (CS) of such data. Our CS recovery approach is based on a convex minimization problem that incorporates this restrictive structure by jointly regularizing the solutions with their nuclear (trace) norm and l2/l1 mixed norm. Our theoretical analysis uses a new notion of restricted isometry property (RIP) and shows that, for sampling schemes satisfying RIP, our approach can stably recover all low-rank and joint-sparse matrices. For a certain class of random sampling schemes satisfying a particular concentration bound (e.g. the subgaussian ensembles) we derive a lower bound on the number of CS measurements indicating the near-optimality of our recovery approach as well as a significant enhancement compared to the state-of-the-art. We introduce an iterative algorithm based on proximal calculus in order to solve the joint nuclear and l2/l1 norms minimization problem and, finally, we illustrate the empirical recovery phase transition of this approach by series of numerical experiments.

Citations (45)

Summary

We haven't generated a summary for this paper yet.