Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
102 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Nearly-optimal Robust Matrix Completion (1606.07315v3)

Published 23 Jun 2016 in cs.LG and cs.NA

Abstract: In this paper, we consider the problem of Robust Matrix Completion (RMC) where the goal is to recover a low-rank matrix by observing a small number of its entries out of which a few can be arbitrarily corrupted. We propose a simple projected gradient descent method to estimate the low-rank matrix that alternately performs a projected gradient descent step and cleans up a few of the corrupted entries using hard-thresholding. Our algorithm solves RMC using nearly optimal number of observations as well as nearly optimal number of corruptions. Our result also implies significant improvement over the existing time complexity bounds for the low-rank matrix completion problem. Finally, an application of our result to the robust PCA problem (low-rank+sparse matrix separation) leads to nearly linear time (in matrix dimensions) algorithm for the same; existing state-of-the-art methods require quadratic time. Our empirical results corroborate our theoretical results and show that even for moderate sized problems, our method for robust PCA is an an order of magnitude faster than the existing methods.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Yeshwanth Cherapanamjeri (25 papers)
  2. Kartik Gupta (24 papers)
  3. Prateek Jain (131 papers)
Citations (94)

Summary

We haven't generated a summary for this paper yet.