Papers
Topics
Authors
Recent
2000 character limit reached

Constructing a Non-Negative Low Rank and Sparse Graph with Data-Adaptive Features

Published 3 Sep 2014 in cs.CV and cs.LG | (1409.0964v1)

Abstract: This paper aims at constructing a good graph for discovering intrinsic data structures in a semi-supervised learning setting. Firstly, we propose to build a non-negative low-rank and sparse (referred to as NNLRS) graph for the given data representation. Specifically, the weights of edges in the graph are obtained by seeking a nonnegative low-rank and sparse matrix that represents each data sample as a linear combination of others. The so-obtained NNLRS-graph can capture both the global mixture of subspaces structure (by the low rankness) and the locally linear structure (by the sparseness) of the data, hence is both generative and discriminative. Secondly, as good features are extremely important for constructing a good graph, we propose to learn the data embedding matrix and construct the graph jointly within one framework, which is termed as NNLRS with embedded features (referred to as NNLRS-EF). Extensive experiments on three publicly available datasets demonstrate that the proposed method outperforms the state-of-the-art graph construction method by a large margin for both semi-supervised classification and discriminative analysis, which verifies the effectiveness of our proposed method.

Citations (93)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.