Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 82 tok/s
Gemini 2.5 Pro 61 tok/s Pro
GPT-5 Medium 35 tok/s Pro
GPT-5 High 36 tok/s Pro
GPT-4o 129 tok/s Pro
Kimi K2 212 tok/s Pro
GPT OSS 120B 474 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Complex Chern-Simons theory at level k via the 3d-3d correspondence (1409.0857v1)

Published 2 Sep 2014 in hep-th, math.GT, and math.QA

Abstract: We use the 3d-3d correspondence together with the DGG construction of theories $T_n[M]$ labelled by 3-manifolds M to define a non-perturbative state-integral model for SL(n,C) Chern-Simons theory at any level k, based on ideal triangulations. The resulting partition functions generalize a widely studied k=1 state-integral as well as the 3d index, which is k=0. The Chern-Simons partition functions correspond to partition functions of $T_n[M]$ on squashed lens spaces L(k,1). At any k, they admit a holomorphic-antiholomorphic factorization, corresponding to the decomposition of L(k,1) into two solid tori, and the associated holomorphic block decomposition of the partition functions of T_n[M]. A generalization to L(k,p) is also presented. Convergence of the state integrals, for any k, requires triangulations to admit a positive angle structure; we propose that this is also necessary for the DGG gauge theory T_n[M] to flow to a desired IR SCFT.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.