Papers
Topics
Authors
Recent
Search
2000 character limit reached

On Decoding of DVR-Based Linear Network Codes

Published 2 Sep 2014 in cs.IT and math.IT | (1409.0599v1)

Abstract: The conventional theory of linear network coding (LNC) is only over acyclic networks. Convolutional network coding (CNC) applies to all networks. It is also a form of LNC, but the linearity is w.r.t. the ring of rational power series rather than the field of data symbols. CNC has been generalized to LNC w.r.t. any discrete valuation ring (DVR) in order for flexibility in applications. For a causal DVR-based code, all possible source-generated messages form a free module, while incoming coding vectors to a receiver span the \emph{received submodule}. An existing \emph{time-invariant decoding} algorithm is at a delay equal to the largest valuation among all invariant factors of the received submodule. This intrinsic algebraic attribute is herein proved to be the optimal decoding delay. Meanwhile, \emph{time-variant decoding} is formulated. The meaning of time-invariant decoding delay gets a new interpretation through being a special case of the time-variant counterpart. The optimal delay turns out to be the same for time-variant decoding, but the decoding algorithm is more flexible in terms of decodability check and decoding matrix design. All results apply, in particular, to CNC.

Citations (4)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.