Papers
Topics
Authors
Recent
2000 character limit reached

The Likelihood Encoder for Lossy Compression

Published 20 Aug 2014 in cs.IT and math.IT | (1408.4522v3)

Abstract: A likelihood encoder is studied in the context of lossy source compression. The analysis of the likelihood encoder is based on the soft-covering lemma. It is demonstrated that the use of a likelihood encoder together with the soft-covering lemma yields simple achievability proofs for classical source coding problems. The cases of the point-to-point rate-distortion function, the rate-distortion function with side information at the decoder (i.e. the Wyner-Ziv problem), and the multi-terminal source coding inner bound (i.e. the Berger-Tung problem) are examined in this paper. Furthermore, a non-asymptotic analysis is used for the point-to-point case to examine the upper bound on the excess distortion provided by this method. The likelihood encoder is also related to a recent alternative technique using properties of random binning.

Citations (79)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.