Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Are topic-specific search term, journal name and author name recommendations relevant for researchers? (1408.4440v2)

Published 19 Aug 2014 in cs.DL and cs.IR

Abstract: In this paper we describe a case study where researchers in the social sciences (n=19) assess topical relevance for controlled search terms, journal names and author names which have been compiled automatically by bibliometric-enhanced information retrieval (IR) services. We call these bibliometric-enhanced IR services Search Term Recommender (STR), Journal Name Recommender (JNR) and Author Name Recommender (ANR) in this paper. The researchers in our study (practitioners, PhD students and postdocs) were asked to assess the top n pre-processed recommendations from each recommender for specific research topics which have been named by them in an interview before the experiment. Our results show clearly that the presented search term, journal name and author name recommendations are highly relevant to the researchers' topic and can easily be integrated for search in Digital Libraries. The average precision for top ranked recommendations is 0.75 for author names, 0.74 for search terms and 0.73 for journal names. The relevance distribution differs largely across topics and researcher types. Practitioners seem to favor author name recommendations while postdocs have rated author name recommendations the lowest. In the experiment the small postdoc group (n=3) favor journal name recommendations.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (1)
  1. Philipp Mayr (111 papers)
Citations (4)

Summary

We haven't generated a summary for this paper yet.