Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 62 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 36 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 67 tok/s Pro
Kimi K2 192 tok/s Pro
GPT OSS 120B 430 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

Solitary Waves in a Discrete Nonlinear Dirac equation (1408.4171v1)

Published 18 Aug 2014 in nlin.PS

Abstract: In the present work, we introduce a discrete formulation of the nonlinear Dirac equation in the form of a discretization of the Gross-Neveu model. The motivation for this discrete model proposal is both computational (near the continuum limit) and theoretical (using the understanding of the anti-continuum limit of vanishing coupling). Numerous unexpected features are identified including a staggered solitary pattern emerging from a single site excitation, as well as two- and three-site excitations playing a role analogous to one- and two-site, respectively, excitations of the discrete nonlinear Schr\"odinger analogue of the model. Stability exchanges between the two- and three-site states are identified, as well as instabilities that appear to be persistent over the coupling strength $\epsilon$, for a subcritical value of the propagation constant $\Lambda$. Variations of the propagation constant, coupling parameter and nonlinearity exponent are all examined in terms of their existence and stability implications and long dynamical simulations are used to unravel the evolutionary phenomenology of the system (when unstable).

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.