Papers
Topics
Authors
Recent
2000 character limit reached

Lüders' and quantum Jeffrey's rules as entropic projections

Published 15 Aug 2014 in quant-ph, cs.IT, math-ph, math.IT, and math.MP | (1408.3502v1)

Abstract: We prove that the standard quantum mechanical description of a quantum state change due to measurement, given by Lueders' rules, is a special case of the constrained maximisation of a quantum relative entropy functional. This result is a quantum analogue of the derivation of the Bayes--Laplace rule as a special case of the constrained maximisation of relative entropy. The proof is provided for the Umegaki relative entropy of density operators over a Hilbert space as well as for the Araki relative entropy of normal states over a W*-algebra. We also introduce a quantum analogue of Jeffrey's rule, derive it in the same way as above, and discuss the meaning of these results for quantum bayesianism.

Citations (7)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

Collections

Sign up for free to add this paper to one or more collections.