Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 79 tok/s
Gemini 2.5 Pro 60 tok/s Pro
GPT-5 Medium 25 tok/s Pro
GPT-5 High 29 tok/s Pro
GPT-4o 117 tok/s Pro
Kimi K2 201 tok/s Pro
GPT OSS 120B 466 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Intersecting families of discrete structures are typically trivial (1408.2559v4)

Published 11 Aug 2014 in math.CO

Abstract: The study of intersecting structures is central to extremal combinatorics. A family of permutations $\mathcal{F} \subset S_n$ is \emph{$t$-intersecting} if any two permutations in $\mathcal{F}$ agree on some $t$ indices, and is \emph{trivial} if all permutations in $\mathcal{F}$ agree on the same $t$ indices. A $k$-uniform hypergraph is \emph{$t$-intersecting} if any two of its edges have $t$ vertices in common, and \emph{trivial} if all its edges share the same $t$ vertices. The fundamental problem is to determine how large an intersecting family can be. Ellis, Friedgut and Pilpel proved that for $n$ sufficiently large with respect to $t$, the largest $t$-intersecting families in $S_n$ are the trivial ones. The classic Erd\H{o}s--Ko--Rado theorem shows that the largest $t$-intersecting $k$-uniform hypergraphs are also trivial when $n$ is large. We determine the \emph{typical} structure of $t$-intersecting families, extending these results to show that almost all intersecting families are trivial. We also obtain sparse analogues of these extremal results, showing that they hold in random settings. Our proofs use the Bollob\'as set-pairs inequality to bound the number of maximal intersecting families, which can then be combined with known stability theorems. We also obtain similar results for vector spaces.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.