A new operational matrix based on Bernoulli polynomials
Abstract: In this research, the Bernoulli polynomials are introduced. The properties of these polynomials are employed to construct the operational matrices of integration together with the derivative and product. These properties are then utilized to transform the differential equation to a matrix equation which corresponds to a system of algebraic equations with unknown Bernoulli coefficients. This method can be used for many problems such as differential equations, integral equations and so on. Numerical examples show the method is computationally simple and also illustrate the efficiency and accuracy of the method.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.