Complete graph asymptotics for the Ising and random cluster models on 5D grids with cyclic boundary
Abstract: The finite size scaling behaviour for the Ising model in five dimensions, with either free or cyclic boundary, has been the subject for a long running debate. The older papers have been based on ideas from e.g. field theory or renormalization. In this paper we propose a detailed and exact scaling picture for critical region of the model with cyclic boundary. Unlike the previous papers our approach is based on a comparison with the existing exact and rigorous results for the FK-random-cluster model on a complete graph. Based on those results we identify several distinct scaling regions in an $L$-dependent window around the critical point. We test these predictions by comparing with data from Monte Carlo simulations and find a good agreement. The main feature which differs between the complete graph and the five dimensional model with free boundary is the existence of a bimodal energy distribution near the critical point in the latter. This feature was found by the same authors in an earlier paper in the form of a quasi-first order phase transition for the same Ising model.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.