Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
158 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

LARSEN-ELM: Selective Ensemble of Extreme Learning Machines using LARS for Blended Data (1408.2003v2)

Published 9 Aug 2014 in cs.LG and stat.ML

Abstract: Extreme learning machine (ELM) as a neural network algorithm has shown its good performance, such as fast speed, simple structure etc, but also, weak robustness is an unavoidable defect in original ELM for blended data. We present a new machine learning framework called LARSEN-ELM for overcoming this problem. In our paper, we would like to show two key steps in LARSEN-ELM. In the first step, preprocessing, we select the input variables highly related to the output using least angle regression (LARS). In the second step, training, we employ Genetic Algorithm (GA) based selective ensemble and original ELM. In the experiments, we apply a sum of two sines and four datasets from UCI repository to verify the robustness of our approach. The experimental results show that compared with original ELM and other methods such as OP-ELM, GASEN-ELM and LSBoost, LARSEN-ELM significantly improve robustness performance while keeping a relatively high speed.

Citations (19)

Summary

We haven't generated a summary for this paper yet.