Kőnig's Line Coloring and Vizing's Theorems for Graphings (1408.1973v3)
Abstract: The classical theorem of Vizing states that every graph of maximum degree $d$ admits an edge-coloring with at most $d+1$ colors. Furthermore, as it was earlier shown by K\H{o}nig, $d$ colors suffice if the graph is bipartite. We investigate the existence of measurable edge-colorings for graphings. A graphing is an analytic generalization of a bounded-degree graph that appears in various areas, such as sparse graph limits, orbit equivalence theory and measurable group theory. We show that every graphing of maximum degree $d$ admits a measurable edge-coloring with $d + O(\sqrt{d})$ colors; furthermore, if the graphing has no odd cycles, then $d+1$ colors suffice. In fact, if a certain conjecture about finite graphs that strengthens Vizing's theorem is true, then our method will show that $d+1$ colors are always enough.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.