Ideal codes over separable ring extensions (1408.1546v1)
Abstract: This paper investigates the application of the theoretical algebraic notion of a separable ring extension, in the realm of cyclic convolutional codes or, more generally, ideal codes. We work under very mild conditions, that cover all previously known as well as new non trivial examples. It is proved that ideal codes are direct summands as left ideals of the underlying non-commutative algebra, in analogy with cyclic block codes. This implies, in particular, that they are generated by an idempotent element. Hence, by using a suitable separability element, we design an efficient algorithm for computing one of such idempotents.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.