Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 68 tok/s
Gemini 2.5 Pro 56 tok/s Pro
GPT-5 Medium 34 tok/s Pro
GPT-5 High 31 tok/s Pro
GPT-4o 84 tok/s Pro
Kimi K2 184 tok/s Pro
GPT OSS 120B 441 tok/s Pro
Claude Sonnet 4.5 33 tok/s Pro
2000 character limit reached

Ideal codes over separable ring extensions (1408.1546v1)

Published 7 Aug 2014 in cs.IT, math.IT, and math.RA

Abstract: This paper investigates the application of the theoretical algebraic notion of a separable ring extension, in the realm of cyclic convolutional codes or, more generally, ideal codes. We work under very mild conditions, that cover all previously known as well as new non trivial examples. It is proved that ideal codes are direct summands as left ideals of the underlying non-commutative algebra, in analogy with cyclic block codes. This implies, in particular, that they are generated by an idempotent element. Hence, by using a suitable separability element, we design an efficient algorithm for computing one of such idempotents.

Citations (16)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.