2000 character limit reached
Homogeneous Open Quantum Random Walks on a lattice (1408.1113v2)
Published 5 Aug 2014 in math.PR and math.OA
Abstract: We study Open Quantum Random Walks for which the underlying graph is a lattice, and the generators of the walk are translation-invariant. We consider the quantum trajectory associated with the OQRW, which is described by a position process and a state process. We obtain a central limit theorem and a large deviation principle for the position process, and an ergodic result for the state process. We study in detail the case of homogeneous OQRWs on a lattice, with internal space $h={\mathbb C}2$.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.