Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 71 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 93 tok/s Pro
Kimi K2 207 tok/s Pro
GPT OSS 120B 460 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

MONEYBaRL: Exploiting pitcher decision-making using Reinforcement Learning (1407.8392v1)

Published 31 Jul 2014 in cs.AI and stat.AP

Abstract: This manuscript uses machine learning techniques to exploit baseball pitchers' decision making, so-called "Baseball IQ," by modeling the at-bat information, pitch selection and counts, as a Markov Decision Process (MDP). Each state of the MDP models the pitcher's current pitch selection in a Markovian fashion, conditional on the information immediately prior to making the current pitch. This includes the count prior to the previous pitch, his ensuing pitch selection, the batter's ensuing action and the result of the pitch.

Citations (11)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.