Papers
Topics
Authors
Recent
2000 character limit reached

Equivalence classes of augmentations and Morse complex sequences of Legendrian knots

Published 25 Jul 2014 in math.SG and math.GT | (1407.7003v1)

Abstract: Let L be a Legendrian knot in R3 with the standard contact structure. In [10], a map was constructed from equivalence classes of Morse complex sequences for L, which are combinatorial objects motivated by generating families, to homotopy classes of augmentations of the Legendrian contact homology algebra of L. Moreover, this map was shown to be a surjection. We show that this correspondence is, in fact, a bijection. As a corollary, homotopic augmentations determine the same graded normal ruling of L and have isomorphic linearized contact homology groups. A second corollary states that the count of equivalence classes of Morse complex sequences of a Legendrian knot is a Legendrian isotopy invariant.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.