Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 77 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 33 tok/s Pro
GPT-5 High 37 tok/s Pro
GPT-4o 95 tok/s Pro
Kimi K2 189 tok/s Pro
GPT OSS 120B 431 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Convex order for path-dependent derivatives: a dynamic programming approach (1407.6348v1)

Published 23 Jul 2014 in math.PR

Abstract: We investigate the (functional) convex order of for various continuous martingale processes, either with respect to their diffusions coefficients for L\'evy-driven SDEs or their integrands for stochastic integrals. Main results are bordered by counterexamples. Various upper and lower bounds can be derived for path wise European option prices in local volatility models. In view of numerical applications, we adopt a systematic (and symmetric) methodology: (a) propagate the convexity in a {\em simulatable} dominating/dominated discrete time model through a backward induction (or linear dynamical principle); (b) Apply functional weak convergence results to numerical schemes/time discretizations of the continuous time martingale satisfying (a) in order to transfer the convex order properties. Various bounds are derived for European options written on convex pathwise dependent payoffs. We retrieve and extend former results obtains by several authors since the seminal 1985 paper by Hajek . In a second part, we extend this approach to Optimal Stopping problems using a that the Snell envelope satisfies (a') a Backward Dynamical Programming Principle to propagate convexity in discrete time; (b') satisfies abstract convergence results under non-degeneracy assumption on filtrations. Applications to the comparison of American option prices on convex pathwise payoff processes are given obtained by a purely probabilistic arguments.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube