Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 147 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 41 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 115 tok/s Pro
Kimi K2 219 tok/s Pro
GPT OSS 120B 434 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Classification of Rank 2 Cluster Varieties (1407.6241v5)

Published 23 Jul 2014 in math.AG

Abstract: We classify rank $2$ cluster varieties (those for which the span of the rows of the exchange matrix is $2$-dimensional) according to the deformation type of a generic fiber $U$ of their ${\mathcal X}$-spaces, as defined by Fock and Goncharov [Ann. Sci. \'Ec. Norm. Sup\'er. (4) 42 (2009), 865-930]. Our approach is based on the work of Gross, Hacking, and Keel for cluster varieties and log Calabi-Yau surfaces. Call $U$ positive if $\dim[\Gamma(U,{\mathcal O}_U)] = \dim(U)$ (which equals 2 in these rank 2 cases). This is the condition for the Gross-Hacking-Keel construction [Publ. Math. Inst. Hautes \'Etudes Sci. 122 (2015), 65-168] to produce an additive basis of theta functions on $\Gamma(U,{\mathcal O}_U)$. We find that $U$ is positive and either finite-type or non-acyclic (in the usual cluster sense) if and only if the inverse monodromy of the tropicalization $U{\rm trop}$ of $U$ is one of Kodaira's monodromies. In these cases we prove uniqueness results about the log Calabi-Yau surfaces whose tropicalization is $U{\rm trop}$. We also describe the action of the cluster modular group on $U{\rm trop}$ in the positive cases.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.