Papers
Topics
Authors
Recent
2000 character limit reached

Novel Realization of Adaptive Sparse Sensing with Sparse Least Mean Fourth Algorithm

Published 23 Jul 2014 in cs.IT and math.IT | (1407.6079v1)

Abstract: Nonlinear sparse sensing (NSS) techniques have been adopted for realizing compressive sensing (CS) in many applications such as Radar imaging and sparse channel estimation. Unlike the NSS, in this paper, we propose an adaptive sparse sensing (ASS) approach using reweighted zero-attracting normalized least mean fourth (RZA-NLMF) algorithm which depends on several given parameters, i.e., reweighted factor, regularization parameter and initial step-size. First, based on the independent assumption, Cramer Rao lower bound (CRLB) is derived as for the performance comparisons. In addition, reweighted factor selection method is proposed for achieving robust estimation performance. Finally, to verify the algorithm, Monte Carlo based computer simulations are given to show that the ASS achieves much better mean square error (MSE) performance than the NSS.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.