Papers
Topics
Authors
Recent
AI Research Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 78 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 12 tok/s Pro
GPT-5 High 14 tok/s Pro
GPT-4o 89 tok/s Pro
Kimi K2 212 tok/s Pro
GPT OSS 120B 472 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

Nonparametric Variable Selection, Clustering and Prediction for High-Dimensional Regression (1407.5472v3)

Published 21 Jul 2014 in stat.ME

Abstract: The development of parsimonious models for reliable inference and prediction of responses in high-dimensional regression settings is often challenging due to relatively small sample sizes and the presence of complex interaction patterns between a large number of covariates. We propose an efficient, nonparametric framework for simultaneous variable selection, clustering and prediction in high-throughput regression settings with continuous or discrete outcomes, called VariScan. The VariScan model utilizes the sparsity induced by Poisson-Dirichlet processes (PDPs) to group the covariates into lower-dimensional latent clusters consisting of covariates with similar patterns among the samples. The data are permitted to direct the choice of a suitable cluster allocation scheme, choosing between PDPs and their special case, a Dirichlet process. Subsequently, the latent clusters are used to build a nonlinear prediction model for the responses using an adaptive mixture of linear and nonlinear elements, thus achieving a balance between model parsimony and flexibility. We investigate theoretical properties of the VariScan procedure that differentiate the allocations patterns of PDPs and Dirichlet processes both in terms of the number and relative sizes of their clusters. Additional theoretical results guarantee the high accuracy of the model-based clustering procedure, and establish model selection and prediction consistency. Through simulation studies and analyses of benchmark data sets, we demonstrate the reliability of VariScan's clustering mechanism and show that the technique compares favorably to, and often outperforms, existing methodologies in terms of the prediction accuracies of the subject-specific responses.

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube