Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
162 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Channel Estimation and Optimal Training Design for Correlated MIMO Two-Way Relay Systems in Colored Environment (1407.5161v1)

Published 19 Jul 2014 in cs.IT and math.IT

Abstract: In this paper, while considering the impact of antenna correlation and the interference from neighboring users, we analyze channel estimation and training sequence design for multi-input multi-output (MIMO) two-way relay (TWR) systems. To this end, we propose to decompose the bidirectional transmission links into two phases, i.e., the multiple access (MAC) phase and the broadcasting (BC) phase. By considering the Kronecker-structured channel model, we derive the optimal linear minimum mean-square-error (LMMSE) channel estimators. The corresponding training designs for the MAC and BC phases are then formulated and solved to improve channel estimation accuracy. For the general scenario of training sequence design for both phases, two iterative training design algorithms are proposed that are verified to produce training sequences that result in near optimal channel estimation performance. Furthermore, for specific practical scenarios, where the covariance matrices of the channel or disturbances are of particular structures, the optimal training sequence design guidelines are derived. In order to reduce training overhead, the minimum required training length for channel estimation in both the MAC and BC phases are also derived. Comprehensive simulations are carried out to demonstrate the effectiveness of the proposed training designs.

Citations (20)

Summary

We haven't generated a summary for this paper yet.