Papers
Topics
Authors
Recent
AI Research Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 75 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 104 tok/s Pro
Kimi K2 170 tok/s Pro
GPT OSS 120B 468 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Separation dimension of bounded degree graphs (1407.5075v1)

Published 18 Jul 2014 in math.CO and cs.DM

Abstract: The 'separation dimension' of a graph $G$ is the smallest natural number $k$ for which the vertices of $G$ can be embedded in $\mathbb{R}k$ such that any pair of disjoint edges in $G$ can be separated by a hyperplane normal to one of the axes. Equivalently, it is the smallest possible cardinality of a family $\mathcal{F}$ of total orders of the vertices of $G$ such that for any two disjoint edges of $G$, there exists at least one total order in $\mathcal{F}$ in which all the vertices in one edge precede those in the other. In general, the maximum separation dimension of a graph on $n$ vertices is $\Theta(\log n)$. In this article, we focus on bounded degree graphs and show that the separation dimension of a graph with maximum degree $d$ is at most $2{9log{\star} d} d$. We also demonstrate that the above bound is nearly tight by showing that, for every $d$, almost all $d$-regular graphs have separation dimension at least $\lceil d/2\rceil$.

Citations (12)

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.