Papers
Topics
Authors
Recent
AI Research Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 83 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 25 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 92 tok/s Pro
Kimi K2 174 tok/s Pro
GPT OSS 120B 462 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

Boxicity and separation dimension (1404.4486v2)

Published 17 Apr 2014 in math.CO and cs.DM

Abstract: A family $\mathcal{F}$ of permutations of the vertices of a hypergraph $H$ is called 'pairwise suitable' for $H$ if, for every pair of disjoint edges in $H$, there exists a permutation in $\mathcal{F}$ in which all the vertices in one edge precede those in the other. The cardinality of a smallest such family of permutations for $H$ is called the 'separation dimension' of $H$ and is denoted by $\pi(H)$. Equivalently, $\pi(H)$ is the smallest natural number $k$ so that the vertices of $H$ can be embedded in $\mathbb{R}k$ such that any two disjoint edges of $H$ can be separated by a hyperplane normal to one of the axes. We show that the separation dimension of a hypergraph $H$ is equal to the 'boxicity' of the line graph of $H$. This connection helps us in borrowing results and techniques from the extensive literature on boxicity to study the concept of separation dimension.

Citations (9)

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.