Papers
Topics
Authors
Recent
2000 character limit reached

A Comparative Study of Meta-heuristic Algorithms for Solving Quadratic Assignment Problem

Published 18 Jul 2014 in cs.AI and cs.NE | (1407.4863v1)

Abstract: Quadratic Assignment Problem (QAP) is an NP-hard combinatorial optimization problem, therefore, solving the QAP requires applying one or more of the meta-heuristic algorithms. This paper presents a comparative study between Meta-heuristic algorithms: Genetic Algorithm, Tabu Search, and Simulated annealing for solving a real-life (QAP) and analyze their performance in terms of both runtime efficiency and solution quality. The results show that Genetic Algorithm has a better solution quality while Tabu Search has a faster execution time in comparison with other Meta-heuristic algorithms for solving QAP.

Citations (83)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.