Papers
Topics
Authors
Recent
Search
2000 character limit reached

KDD-SC: Subspace Clustering Extensions for Knowledge Discovery Frameworks

Published 15 Jul 2014 in cs.DB | (1407.3850v1)

Abstract: Analyzing high dimensional data is a challenging task. For these data it is known that traditional clustering algorithms fail to detect meaningful patterns. As a solution, subspace clustering techniques have been introduced. They analyze arbitrary subspace projections of the data to detect clustering structures. In this paper, we present our subspace clustering extension for KDD frameworks, termed KDD-SC. In contrast to existing subspace clustering toolkits, our solution neither is a standalone product nor is it tightly coupled to a specific KDD framework. Our extension is realized by a common codebase and easy-to-use plugins for three of the most popular KDD frameworks, namely KNIME, RapidMiner, and WEKA. KDD-SC extends these frameworks such that they offer a wide range of different subspace clustering functionalities. It provides a multitude of algorithms, data generators, evaluation measures, and visualization techniques specifically designed for subspace clustering. These functionalities integrate seamlessly with the frameworks' existing features such that they can be flexibly combined. KDD-SC is publicly available on our website.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.