Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A New Approach for Super resolution by Using Web Images and FFT Based Image Registration (1407.3675v1)

Published 5 Jul 2014 in cs.CV

Abstract: Preserving accuracy is a challenging issue in super resolution images. In this paper, we propose a new FFT based image registration algorithm and a sparse based super resolution algorithm to improve the accuracy of super resolution image. Given a low resolution image, our approach initially extracts the local descriptors from the input and then the local descriptors from the whole correlated images using the SIFT algorithm. Once this is completed, it will compare the local descriptors on the basis of a threshold value. The retrieved images could be having different focal length, illumination, inclination and size. To overcome the above differences of the retrieved images, we propose a new FFT based image registration algorithm. After the registration stage, we apply a sparse based super resolution on the images for recreating images with better resolution compared to the input. Based on the PSSNR calculation and SSIM comparison, we can see that the new methodology creates a better image than the traditional methods.

Citations (1)

Summary

We haven't generated a summary for this paper yet.