Papers
Topics
Authors
Recent
2000 character limit reached

Biclustering Via Sparse Clustering

Published 11 Jul 2014 in stat.ME and stat.ML | (1407.3010v1)

Abstract: In many situations it is desirable to identify clusters that differ with respect to only a subset of features. Such clusters may represent homogeneous subgroups of patients with a disease, such as cancer or chronic pain. We define a bicluster to be a submatrix U of a larger data matrix X such that the features and observations in U differ from those not contained in U. For example, the observations in U could have different means or variances with respect to the features in U. We propose a general framework for biclustering based on the sparse clustering method of Witten and Tibshirani (2010). We develop a method for identifying features that belong to biclusters. This framework can be used to identify biclusters that differ with respect to the means of the features, the variance of the features, or more general differences. We apply these methods to several simulated and real-world data sets and compare the results of our method with several previously published methods. The results of our method compare favorably with existing methods with respect to both predictive accuracy and computing time.

Citations (1)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.