Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

On the Convergence of the Mean Shift Algorithm in the One-Dimensional Space (1407.2961v1)

Published 10 Jul 2014 in cs.CV

Abstract: The mean shift algorithm is a non-parametric and iterative technique that has been used for finding modes of an estimated probability density function. It has been successfully employed in many applications in specific areas of machine vision, pattern recognition, and image processing. Although the mean shift algorithm has been used in many applications, a rigorous proof of its convergence is still missing in the literature. In this paper we address the convergence of the mean shift algorithm in the one-dimensional space and prove that the sequence generated by the mean shift algorithm is a monotone and convergent sequence.

Citations (32)

Summary

We haven't generated a summary for this paper yet.