Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Space Partitioning and Regression Mode Seeking via a Mean-Shift-Inspired Algorithm (2104.10103v1)

Published 20 Apr 2021 in stat.ML, cs.LG, and stat.CO

Abstract: The mean shift (MS) algorithm is a nonparametric method used to cluster sample points and find the local modes of kernel density estimates, using an idea based on iterative gradient ascent. In this paper we develop a mean-shift-inspired algorithm to estimate the modes of regression functions and partition the sample points in the input space. We prove convergence of the sequences generated by the algorithm and derive the non-asymptotic rates of convergence of the estimated local modes for the underlying regression model. We also demonstrate the utility of the algorithm for data-enabled discovery through an application on biomolecular structure data. An extension to subspace constrained mean shift (SCMS) algorithm used to extract ridges of regression functions is briefly discussed.

Summary

We haven't generated a summary for this paper yet.