Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Clustering via Mode Seeking by Direct Estimation of the Gradient of a Log-Density (1404.5028v1)

Published 20 Apr 2014 in stat.ML

Abstract: Mean shift clustering finds the modes of the data probability density by identifying the zero points of the density gradient. Since it does not require to fix the number of clusters in advance, the mean shift has been a popular clustering algorithm in various application fields. A typical implementation of the mean shift is to first estimate the density by kernel density estimation and then compute its gradient. However, since good density estimation does not necessarily imply accurate estimation of the density gradient, such an indirect two-step approach is not reliable. In this paper, we propose a method to directly estimate the gradient of the log-density without going through density estimation. The proposed method gives the global solution analytically and thus is computationally efficient. We then develop a mean-shift-like fixed-point algorithm to find the modes of the density for clustering. As in the mean shift, one does not need to set the number of clusters in advance. We empirically show that the proposed clustering method works much better than the mean shift especially for high-dimensional data. Experimental results further indicate that the proposed method outperforms existing clustering methods.

Citations (46)

Summary

We haven't generated a summary for this paper yet.