Papers
Topics
Authors
Recent
2000 character limit reached

Learning Probabilistic Programs

Published 9 Jul 2014 in cs.AI, cs.LG, and stat.ML | (1407.2646v1)

Abstract: We develop a technique for generalising from data in which models are samplers represented as program text. We establish encouraging empirical results that suggest that Markov chain Monte Carlo probabilistic programming inference techniques coupled with higher-order probabilistic programming languages are now sufficiently powerful to enable successful inference of this kind in nontrivial domains. We also introduce a new notion of probabilistic program compilation and show how the same machinery might be used in the future to compile probabilistic programs for efficient reusable predictive inference.

Citations (15)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Collections

Sign up for free to add this paper to one or more collections.