Identifying Higher-order Combinations of Binary Features
Abstract: Finding statistically significant interactions between binary variables is computationally and statistically challenging in high-dimensional settings, due to the combinatorial explosion in the number of hypotheses. Terada et al. recently showed how to elegantly address this multiple testing problem by excluding non-testable hypotheses. Still, it remains unclear how their approach scales to large datasets. We here proposed strategies to speed up the approach by Terada et al. and evaluate them thoroughly in 11 real-world benchmark datasets. We observe that one approach, incremental search with early stopping, is orders of magnitude faster than the current state-of-the-art approach.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.