Papers
Topics
Authors
Recent
Search
2000 character limit reached

On the Hausdorff dimension of some sets of numbers defined through the digits of their $Q$-Cantor series expansions

Published 3 Jul 2014 in math.NT | (1407.0776v2)

Abstract: Following in the footsteps of P. Erd\H{o}s and A. R\'enyi we compute the Hausdorff dimension of sets of numbers whose digits with respect to their $Q$-Cantor series expansions satisfy various statistical properties. In particular, we consider difference sets associated with various notions of normality and sets of numbers with a prescribed range of digits.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Collections

Sign up for free to add this paper to one or more collections.