Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 172 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 33 tok/s Pro
GPT-5 High 42 tok/s Pro
GPT-4o 96 tok/s Pro
Kimi K2 210 tok/s Pro
GPT OSS 120B 433 tok/s Pro
Claude Sonnet 4.5 38 tok/s Pro
2000 character limit reached

Regular propagators of bilinear quantum systems (1406.7847v3)

Published 30 Jun 2014 in math.AP and math.OC

Abstract: The present analysis deals with the regularity of solutions of bilinear control systems of the type $x'=(A+u(t)B)x$where the state $x$ belongs to some complex infinite dimensional Hilbert space, the (possibly unbounded) linear operators $A$ and $B$ are skew-adjoint and the control $u$ is a real valued function. Such systems arise, for instance, in quantum control with the bilinear Schr\"{o}dinger equation. For the sake of the regularity analysis, we consider a more general framework where $A$ and $B$ are generators of contraction semi-groups.Under some hypotheses on the commutator of the operators $A$ and $B$, it is possible to extend the definition of solution for controls in the set of Radon measures to obtain precise a priori energy estimates on the solutions, leading to a natural extension of the celebrated noncontrollability result of Ball, Marsden, and Slemrod in 1982. Complementary material to this analysis can be found in [hal-01537743v1]

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.