Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Compression in the Space of Permutations (1406.7435v3)

Published 28 Jun 2014 in cs.IT and math.IT

Abstract: We investigate lossy compression (source coding) of data in the form of permutations. This problem has direct applications in the storage of ordinal data or rankings, and in the analysis of sorting algorithms. We analyze the rate-distortion characteristic for the permutation space under the uniform distribution, and the minimum achievable rate of compression that allows a bounded distortion after recovery. Our analysis is with respect to different practical and useful distortion measures, including Kendall-tau distance, Spearman's footrule, Chebyshev distance and inversion-$\ell_1$ distance. We establish equivalence of source code designs under certain distortions and show simple explicit code designs that incur low encoding/decoding complexities and are asymptotically optimal. Finally, we show that for the Mallows model, a popular nonuniform ranking model on the permutation space, both the entropy and the maximum distortion at zero rate are much lower than the uniform counterparts, which motivates the future design of efficient compression schemes for this model.

Citations (21)

Summary

We haven't generated a summary for this paper yet.