2000 character limit reached
Rate-Distortion for Ranking with Incomplete Information (1401.3093v1)
Published 14 Jan 2014 in cs.IT and math.IT
Abstract: We study the rate-distortion relationship in the set of permutations endowed with the Kendall Tau metric and the Chebyshev metric. Our study is motivated by the application of permutation rate-distortion to the average-case and worst-case analysis of algorithms for ranking with incomplete information and approximate sorting algorithms. For the Kendall Tau metric we provide bounds for small, medium, and large distortion regimes, while for the Chebyshev metric we present bounds that are valid for all distortions and are especially accurate for small distortions. In addition, for the Chebyshev metric, we provide a construction for covering codes.