Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
110 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Lossy Compression via Sparse Linear Regression: Computationally Efficient Encoding and Decoding (1212.1707v2)

Published 7 Dec 2012 in cs.IT, math.IT, and stat.ML

Abstract: We propose computationally efficient encoders and decoders for lossy compression using a Sparse Regression Code. The codebook is defined by a design matrix and codewords are structured linear combinations of columns of this matrix. The proposed encoding algorithm sequentially chooses columns of the design matrix to successively approximate the source sequence. It is shown to achieve the optimal distortion-rate function for i.i.d Gaussian sources under the squared-error distortion criterion. For a given rate, the parameters of the design matrix can be varied to trade off distortion performance with encoding complexity. An example of such a trade-off as a function of the block length n is the following. With computational resource (space or time) per source sample of O((n/\log n)2), for a fixed distortion-level above the Gaussian distortion-rate function, the probability of excess distortion decays exponentially in n. The Sparse Regression Code is robust in the following sense: for any ergodic source, the proposed encoder achieves the optimal distortion-rate function of an i.i.d Gaussian source with the same variance. Simulations show that the encoder has good empirical performance, especially at low and moderate rates.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Ramji Venkataramanan (45 papers)
  2. Tuhin Sarkar (10 papers)
  3. Sekhar Tatikonda (33 papers)
Citations (60)

Summary

We haven't generated a summary for this paper yet.