Papers
Topics
Authors
Recent
2000 character limit reached

Rational Connectivity and Analytic Contractibility

Published 27 Jun 2014 in math.AG and math.NT | (1406.7312v2)

Abstract: Let k be an algebraically closed field of characteristic 0, and let f be a morphism of smooth projective varieties from X to Y over the ring k((t)) of formal Laurent series. We prove that if a general geometric fiber of f is rationally connected, then the Berkovich analytifications of X and Y are homotopy equivalent. Two important consequences of this result are that the homotopy type of the Berkovich analytification of any smooth projective variety X over k((t)) is a birational invariant of X, and that the Berkovich analytification of a rationally connected smooth projective variety over k((t)) is contractible.

Citations (4)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Collections

Sign up for free to add this paper to one or more collections.