Papers
Topics
Authors
Recent
2000 character limit reached

Efficient Gluing of Numerical Continuation and a Multiple Solution Method for Elliptic PDEs

Published 26 Jun 2014 in math.DS, cs.MS, math.NA, nlin.PS, and physics.comp-ph | (1406.6900v3)

Abstract: Numerical continuation calculations for ordinary differential equations (ODEs) are, by now, an established tool for bifurcation analysis in dynamical systems theory as well as across almost all natural and engineering sciences. Although several excellent standard software packages are available for ODEs, there are - for good reasons - no standard numerical continuation toolboxes available for partial differential equations (PDEs), which cover a broad range of different classes of PDEs automatically. A natural approach to this problem is to look for efficient gluing computation approaches, with independent components developed by researchers in numerical analysis, dynamical systems, scientific computing and mathematical modelling. In this paper, we shall study several elliptic PDEs (Lane-Emden-Fowler, Lane-Emden-Fowler with microscopic force, Caginalp) via the numerical continuation software pde2path and develop a gluing component to determine a set of starting solutions for the continuation by exploting the variational structures of the PDEs. In particular, we solve the initialization problem of numerical continuation for PDEs via a minimax algorithm to find multiple unstable solution. Furthermore, for the Caginalp system, we illustrate the efficient gluing link of pde2path to the underlying mesh generation and the FEM MatLab pdetoolbox. Even though the approach works efficiently due to the high-level programming language and without developing any new algorithms, we still obtain interesting bifurcation diagrams and directly applicable conclusions about the three elliptic PDEs we study, in particular with respect to symmetry-breaking. In particular, we show for a modified Lane-Emden-Fowler equation with an asymmetric microscopic force, how a fully connected bifurcation diagram splits up into C-shaped isolas on which localized pattern deformation appears towards two different regimes.

Citations (21)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

Collections

Sign up for free to add this paper to one or more collections.