Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 168 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 37 tok/s Pro
GPT-5 High 34 tok/s Pro
GPT-4o 99 tok/s Pro
Kimi K2 214 tok/s Pro
GPT OSS 120B 466 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Forward--partial inverse--forward splitting for solving monotone inclusions (1406.6257v1)

Published 24 Jun 2014 in math.OC

Abstract: In this paper we provide a splitting method for finding a zero of the sum of a maximally monotone operator, a lipschitzian monotone operator, and a normal cone to a closed vectorial subspace of a real Hilbert space. The problem is characterized by a simpler monotone inclusion involving only two operators: the partial inverse of the maximally monotone operator with respect to the vectorial subspace and a suitable lipschitzian monotone operator. By applying the Tseng's method in this context we obtain a splitting algorithm that exploits the whole structure of the original problem and generalizes partial inverse and Tseng's methods. Connections with other methods available in the literature and applications to inclusions involving $m$ maximally monotone operators, to primal-dual composite monotone inclusions, and to zero-sum games are provided.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.