Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 95 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 15 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 90 tok/s Pro
GPT OSS 120B 449 tok/s Pro
Kimi K2 192 tok/s Pro
2000 character limit reached

A new gravitational wave generation algorithm for particle perturbations of the Kerr spacetime (1406.5983v2)

Published 23 Jun 2014 in gr-qc

Abstract: We present a new approach to solve the 2+1 Teukolsky equation for gravitational perturbations of a Kerr black hole. Our approach relies on a new horizon penetrating, hyperboloidal foliation of Kerr spacetime and spatial compactification. In particular, we present a framework for waveform generation from point-particle perturbations. Extensive tests of a time domain implementation in the code {\it Teukode} are presented. The code can efficiently deliver waveforms at future null infinity. As a first application of the method, we compute the gravitational waveforms from inspiraling and coalescing black-hole binaries in the large-mass-ratio limit. The smaller mass black hole is modeled as a point particle whose dynamics is driven by an effective-one-body-resummed analytical radiation reaction force. We compare the analytical angular momentum loss to the gravitational wave angular momentum flux. We find that higher-order post-Newtonian corrections are needed to improve the consistency for rapidly spinning binaries. Close to merger, the subdominant multipolar amplitudes (notably the $m=0$ ones) are enhanced for retrograde orbits with respect to prograde ones. We argue that this effect mirrors nonnegligible deviations from circularity of the dynamics during the late-plunge and merger phase. We compute the gravitational wave energy flux flowing into the black hole during the inspiral using a time-domain formalism proposed by Poisson. Finally, a self-consistent, iterative method to compute the gravitational wave fluxes at leading-order in the mass of the particle is presented. For a specific case study with $\hat{a}$=0.9, a simulation that uses the consistent flux differs from one that uses the analytical flux by $\sim35$ gravitational wave cycles over a total of about $250$ cycles. In this case the horizon absorption accounts for about $+5$ gravitational wave cycles.

Citations (69)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.