Papers
Topics
Authors
Recent
Search
2000 character limit reached

RAPID: Rapidly Accelerated Proximal Gradient Algorithms for Convex Minimization

Published 13 Jun 2014 in stat.ML, cs.LG, and math.OC | (1406.4445v2)

Abstract: In this paper, we propose a new algorithm to speed-up the convergence of accelerated proximal gradient (APG) methods. In order to minimize a convex function $f(\mathbf{x})$, our algorithm introduces a simple line search step after each proximal gradient step in APG so that a biconvex function $f(\theta\mathbf{x})$ is minimized over scalar variable $\theta>0$ while fixing variable $\mathbf{x}$. We propose two new ways of constructing the auxiliary variables in APG based on the intermediate solutions of the proximal gradient and the line search steps. We prove that at arbitrary iteration step $t (t\geq1)$, our algorithm can achieve a smaller upper-bound for the gap between the current and optimal objective values than those in the traditional APG methods such as FISTA, making it converge faster in practice. In fact, our algorithm can be potentially applied to many important convex optimization problems, such as sparse linear regression and kernel SVMs. Our experimental results clearly demonstrate that our algorithm converges faster than APG in all of the applications above, even comparable to some sophisticated solvers.

Citations (9)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.