Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Generalized argument shift method and complete commutative subalgebras in polynomial Poisson algebras (1406.3777v2)

Published 14 Jun 2014 in math.RT

Abstract: The Mischenko-Fomenko argument shift method allows to construct commutative subalgebras in the symmetric algebra $S(\mathfrak g)$ of a finite-dimensional Lie algebra $\mathfrak g$. For a wide class of Lie algebras, these commutative subalgebras appear to be complete, i.e. they have maximal transcendence degree. However, for many algebras, Mischenko-Fomenko subalgebras are incomplete or even empty. In this case, we suggest a natural way how to extend Mischenko-Fomenko subalgebras, and give a completeness criterion for these extended subalgebras.

Summary

We haven't generated a summary for this paper yet.