Papers
Topics
Authors
Recent
Search
2000 character limit reached

The Linear Information Coupling Problems

Published 11 Jun 2014 in cs.IT and math.IT | (1406.2834v1)

Abstract: Many network information theory problems face the similar difficulty of single-letterization. We argue that this is due to the lack of a geometric structure on the space of probability distribution. In this paper, we develop such a structure by assuming that the distributions of interest are close to each other. Under this assumption, the K-L divergence is reduced to the squared Euclidean metric in an Euclidean space. In addition, we construct the notion of coordinate and inner product, which will facilitate solving communication problems. We will present the application of this approach to the point-to-point channel, general broadcast channel, and the multiple access channel (MAC) with the common source. It can be shown that with this approach, information theory problems, such as the single-letterization, can be reduced to some linear algebra problems. Moreover, we show that for the general broadcast channel, transmitting the common message to receivers can be formulated as the trade-off between linear systems. We also provide an example to visualize this trade-off in a geometric way. Finally, for the MAC with the common source, we observe a coherent combining gain due to the cooperation between transmitters, and this gain can be quantified by applying our technique.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Collections

Sign up for free to add this paper to one or more collections.