Papers
Topics
Authors
Recent
Search
2000 character limit reached

Cluster algebras from dualities of 2d N=(2,2) quiver gauge theories

Published 10 Jun 2014 in hep-th and math.RA | (1406.2699v1)

Abstract: We interpret certain Seiberg-like dualities of two-dimensional N=(2,2) quiver gauge theories with unitary groups as cluster mutations in cluster algebras, originally formulated by Fomin and Zelevinsky. In particular, we show how the complexified Fayet-Iliopoulos parameters of the gauge group factors transform under those dualities and observe that they are in fact related to the dual cluster variables of cluster algebras. This implies that there is an underlying cluster algebra structure in the quantum Kahler moduli space of manifolds constructed from the corresponding Kahler quotients. We study the S2 partition function of the gauge theories, showing that it is invariant under dualities/mutations, up to an overall normalization factor whose physical origin and consequences we spell out in detail. We also present similar dualities in N=(2,2)* quiver gauge theories, which are related to dualities of quantum integrable spin chains.

Citations (52)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.