Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 28 tok/s Pro
GPT-5 High 33 tok/s Pro
GPT-4o 70 tok/s Pro
Kimi K2 205 tok/s Pro
GPT OSS 120B 428 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Hypercomplex Algebras and their application to the mathematical formulation of Quantum Theory (1406.1014v1)

Published 4 Jun 2014 in quant-ph and math.RA

Abstract: Quantum theory (QT), namely in terms of Schr\"odinger's 1926 wave functions in general requires complex numbers to be formulated. However, it soon turned out to even require some hypercomplex algebra. Incorporating Special Relativity leads to an equation (Dirac 1928) requiring pairwise anti-commuting coefficients, usually $4\times 4$ matrices. A unitary ring of square matrices is an associative hypercomplex algebra by definition. Since only the algebraic properties and relations of the elements matter, we replace the matrices by biquaternions. In this paper, we first consider the basics of non-relativistic and relativistic QT. Then we introduce general hypercomplex algebras and also show how a relativistic quantum equation like Dirac's one can be formulated using biquaternions. Subsequently, some algebraic preconditions for operations within hypercomplex algebras and their subalgebras will be examined. For our purpose equations akin to Schr\"odinger's should be able to be set up and solved. Functions of complementary variables should be Fourier transforms of each other. This should hold within a purely non-real subspace which must hence be a subalgebra. Furthermore, it is an ideal denoted by $\mathcal{J}$. It must be isomorphic to $\mathbb{C}$, hence containing an internal identity element. The bicomplex numbers will turn out to fulfil these preconditions, and therefore, the formalism of QT can be developed within its subalgebras. We also show that bicomplex numbers encourage the definition of several different kinds of conjugates. One of these treats the elements of $\mathcal{J}$ like the usual conjugate treats complex numbers. This defines a quantity what we call a modulus which, in contrast to the complex absolute square, remains non-real (but may be called `pseudo-real'). However, we do not conduct an explicit physical interpretation here but we leave this to future examinations.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.